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SUMMARY 

A nested non-linear multigrid algorithm is developed to solve the Navier-Stokes equations which describe 
the steady incompressible flow past a sphere. The vorticity-streamfunction formulation of the Navier-Stokes 
equations is chosen. The continuous operators are discretized by an upwind finite difference scheme. Several 
algorithms are tested as smoothing steps. The multigrid method itself provides only a first-order-accurate 
solution. To obtain at least second-order accuracy, a defect correction iteration is used as outer iteration. 
Results are reported for Re=50, 100, 400 and 1OOO. 
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INTRODUCTION 

A large number of studies have been published on the subject of momentum, heat and mass 
transport to a body of revolution. Clift et al.' give an extensive coverage of transport phenomena 
around spherical particles. 

For R e 3 1  the Navier-Stokes equations for the flow past a sphere have only numerical 
solutions. The earliest finite difference solution was reported by Jenson' for steady state flow at 
Re= 5 ,  10, 20 and 40. Using the same technique, other workers extended the work of Jenson to 
finer grids and higher Re.3-6 In these studies a quasi-local relaxation with an empirical 
formula for the relaxation parameter was used. 

An alternative approach was employed in Reference 7: the time-dependent problem was solved. 
The solution is continued until the flow is effectively steady. The vorticity is time-stepped forward 
directly. At every time step the streamfunction equation is relaxed until a convergence criterion is 
achieved. This process is repeated until the vorticity converges. Clift et a/.' mention that this 
variant sometimes requires less computation than the iterative approach. 

In the papers mentioned above the computational efforts are not presented in detail. It can be 
seen, however, that the problem is a hard one and, with the methods used, necessitates long 
computer times. 

In the past decade the progress in computer hardware as well as in numerical algorithms has 
enabled attempts to be made towards the analysis and numerical solution of highly complex flow 
problems. Among the methods developed recently the multigrid (MG) method emerges as a 
very powerful one. 
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Implemented in existing hydrodynamic codes, MG assures a reduction of the computational 
time by at least 50%.’- lo In References 8-10 the velocity-pressure formulation of the 
Navier-Stokes equations is used. Other experiments with the same formulation are reported in 
References 11-13. An MG solution of the fourth-order equation of the streamfunction is presented 
in Reference 14. 

Because in this study the vorticity-streamfunction formulation is used, we focus our attention 
on the papers in which the same formulation is employed. Wesseling and Sonneveld” and Moll6 
present results for the driven cavity problem and driven cavity and flow past a circular cylinder 
respectively. The Il’in discretization procedure is used. Their MG (the sawtooth cycle for linear 
systems) works as an inner iteration into a Newton procedure. The results can be viewed 
primordially of mathematical interest. The direct solution with the non-linear MG is made by 
Ghia et a l l 7  for the driven cavity problem and by Fuchs” for the flow in channels. Ghia et al.” 
used an upwind discretization and Stone’s SIP as smoother. 

The Navier-Stokes equations belong to the class termed convection-diffusion equations. For 
such problems MG provides only a first-order-accurate solution. The reason is explained in detail 
in Reference 14. To retain the advantages offered by M G  and to obtain more accurate results, 
several techniques were proposed in Reference 14. Among these the most suitable for a general 
problem seems to be the defect correction (DC) iteration. 1 9 9 2 0  In the domain of the Navier-Stokes 
equations, Khosla and Rubin” were among the first to employ the combination of the 
preconditioned conjugate gradient (PCG) technique and DC. Ghia et ~ 1 . ’ ~  changed the PCG in 
the Khosla and Rubin algorithm to MG. Other similar experiments were done by Brandt13 and 
Fuchs and Zhao”. 

The present study represents an effort to employ the combination MG-DC in the solution of 
the Navier-Stokes equations which describe the steady incompressible flow past a rigid sphere. 
Some new and interesting results are obtained. A nested DC-MG strategy-used to our 
knowledge for the first time in this paper-seems to be very efficient. 

MODEL EQUATIONS 

Consider a rigid spherical particle of radius a moving into an unbounded volume of fluid. The 
following assumptions are made. 

(a) The flow is steady, axisymmetric and laminar. 
(b) The physical properties of the particle and medium are constant. 
(c) The shape and volume of the particle are constant. 
(d) The fluid is Newtonian. 

With these assumptions the Navier-Stokes equations in dimensionless form are 

streamfunction ($) 

a 2 +  a2+ a$ a* 
az2  a 6 2  aZ ae __+----cot 6 - = [ exp (32) sin 6,  

uorticity (i) 

a 2 y  a 2 y  ay a i  r =-+-+-+cotO--- aZ a e 2  aZ 80 sinZ6’ 
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where 

1 a* v --- ’- r2 sin 8 aZ 
v 1 a* 

r2 sin 8 a8 ’ R- 

and Re is the particle Reynolds number. 
The boundary conditions considered are 

8=O,n: *=o, [ = O ,  

1 a2* 

aZ sin 8 azz ’ 
a* -0, [=-- -- z=o: *=o, 

z =  00: t,b=0.50exp(2z)sin28, [ = O .  

In equations (1) the well known transformation r = exp z was applied. 

38 1 

METHOD OF SOLUTION 

Some difficulties of the MG solution of equations (1) originate from the discretization process. 
Therefore we begin with the discretization of equations (1). 

For relatively large Re in the equations (1) the convection dominates the diffusion. Discretiza- 
tion with the usual schemes of order at least two in accuracy leads in this case to an unstable 
discrete operator. One remedy is to use a local relaxation technique.” This alternative is discussed 
el~ewhere.’~ Another remedy is to choose an adequate discretization scheme. The most usual 
schemes recommended in this case are presented in Reference 24. In the present paper an upwind 
finite difference scheme was used for equation (Ib). Equation (la) was discretized with a centred 
second-order-accurate scheme. Results with an artificial viscosity scheme are presented in 
Reference 25. 

The discretization of the Navier-Stokes equations leads to a non-linear system of equations. In 
a first attempt these will be solved by an MG method. A complete description of the MG ideas and 
algorithms can be found in References 14, 26 and 27. Here only the major features of the MG 
algorithm are presented. 

In the MG method one attempts to solve the discrete approximation 

to a continuous equation 

N u = F  (3) 
on a sequence of grids GI, . . . , GL with corresponding mesh sizes h ,  > . . . > h,. To define the 
MG iteration step (cycle) the following operators must be specified: 

the non-linear grid operator 

N &  : %(G&) +WG&), 

~ ~ - l , & : ~ ( G & - l ) + ~ ( G & ) ,  

the prolongation operator 

the restriction operator 

Z&,&-~:%(G&)~~(G&-~), 
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the iteration operator 

Sk: 9 (GJ + Y(GJ, 

where 9(Gk) denotes the space of gridfunctions on G,. The variant which is used in this paper is 
the nested FAS algorithmz6 suitable for general non-linear problems. In quasi-PASCAL the FAS 
step can be written as 

procedure FAS(1, u,, F,);  integer I; array u, ,  F ,  

if I =  1 then U ~ : = S ; ~ ( U , ,  F,)  else 
(44  

(4b) 
begin integer i; array u, r, u" 

u , : = S ; '  (ul, F,); ii,-,:=Inj*u, 

r, - : = I , , , -  * ( F ,  - N,u,)+ N l -  6,- 

u,-,:=u",-,; for i : = l ( l ) Y  do FAS(1-1, ufPl ,  r f - l )  

u,: =u,+  I , -  1,, * (UL- 1 - 6,- 1) 

u,: = s ; q u , ,  F,) 

end (4i) 

where Y =  1 for the V-cycle and Y = 2 for the W-cycle. 
It is well known'" 17*21 that successive relaxation of the individual equations (la) and (1 b) is an 

inefficient process and, especially in an MG algorithm," has a poor smoothing rate. In this work, 
collective relaxation of equations (la) and (Ib) is used. 

Point Gauss-Seidel (PGS), symmetric Gauss-Seidel (SGS), alternating line Gauss-Seidel 
(ALGS), incomplete lower-upper decomposition (ILU (1, 1)) and combinations of these were used 
as smoothers. The results concerning the smoothing efficiency of the methods mentioned above 
will be presented in the next section. 

When a grid was visited for the first time, cubic in te rp~la t ion '~  was used. In other cases the 
linear nine-point prolongation operator was employed. As a restriction, the experiments have 
been done with injection and full weighting. In (4d), Inj means injection. Four levels were used with 
v = 2 and v z  = 1. The coarsest has 9 x 9 points with h, = h, = n/8; the finest has 65 x 65 points with 
h, = h, = n/64. 

Only with the MG method can a first-order-accurate solution (owing to the upwind 
discretization) be obtained. As can be seen in the next section, this solution is unacceptable from 
the point of view of accuracy. From the theoretical and experimental data presented in 
the literature,' second-order accuracy is at least desirable. The method employed in this work is to 
obtain high accuracy without solving a high-order discretization equation. In MG this can be 
done with the following ~trategies: '~ 

(a) t-extrapolation 
(b) Richardson extrapolation 
(c) double discretization 
(d) DC iteration. 

The two extrapolation methods can be well used if the solution is indeed smooth. A drawback is 
that these methods rely on the existence of an asymptotic expansion of the truncation error for 
h+O, and globally, no a priori information about the validity of this assumption is available. In a 
similar situation for the Euler equations, HemkerZ8 chooses DC iteration. Thus, in spite of the fact 
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that it is more expensive than the other methods, DC iteration seems to be the most adequate for a 
general problem. 

If we denote by Nhq the upwind discretization of the non-linear operator N and by N,,2  the 
second-order discretization of N ,  the DC iteration can be written as2' 

Nh,  ut+ = N h ,  1 u i -  [ N h ,  224; - F J .  

It can be proved2' that a solution of 

N h , 2 U h =  F h  (6 )  
is also a fixed point of (5). One step of the DC iteration is not necessary to be effectively solved. 
Some iterations with a given iterative method are sufficient. In this work the DC step comprises 
one or more MG cycles. Taking into consideration the DC iteration too, the algorithm can be 
written as 

start with an approximation for ui 

for I: = l(1)L- 1 do 

(74  

(7b) 

begin 

for i: = 1( 1) iter do FAS(1, uI ,  F,)  
3 

4 + 1 :  = l l , I + l 4  

end 

l = L  

for i: = l(1)iter do FAS(L, uL, FL) 

for j: = l(1)ncdc do 

(7h) 

(79 

begin 

d:  = N L . 1  uL- N,, ,u,+ F L  

for i: = 1( 1) kd do FAS(L, uL, d) 

end (7m) 
where iter = 15 for I = 1, iter = 2 for 1 < 1 d L and I &  + is the cubic interpolation. The quantity d in 
(7k) is computed only for the vorticity. 

were set equal to zero on all grid points 
except for II/ at z = co where the boundary condition (le) holds. 

In all the computations the initial values for $ and 

NUMERICAL RESULTS AND DISCUSSIONS 

At the beginning of this section the behaviour of the MG algorithm (steps (7aH7h)) is discussed. 
The first aspect presented is the convergence property of the algorithm as a function of the 
smoothing method. The experiments done are summarized in Table I .  Table I presents the results 
for Re=50  and 1000 only. For Re= 100 and 400 the values obtained for p lie between those 
presented in Table I. Except for some surprises (the divergence of ILU at Re = 50 and the good 
comportment of PGS at Re= lOOO), the values obtained for p are higher (but not significantly so) 
than those reported in the literature for standard linear problems. The time reported in Table I is 
the CPU time needed on a FELIX C512 computer in double-precision arithmetic for steps 



384 GH. JUNCU AND R. MIHAIL 

Table I. Effect of the smoothing algorithm on the convergence of MG 
~~ 

Smoother 
Time 

Equation (la) Equation (1 b) Re P t  (s) 

PGS PGS 50 
lo00 

PGS SGS 50 
lo00 

SGS SGS 50 
lo00 

PGS ILU 50 
lo00 

ILU ILU 50 
lo00 

PGS ALGS 50 
lo00 

ALGS ALGS 50 
lo00 

0.251 263.28 
0.156 
0.224 407.33 
0.154 
0.29 1 4300 
0.150 
0.229 428.79 
0.1 17 

>1 46250 
0209 
0.217 51 1.86 
0.112 
0.078 625.5 1 
0.047 

~~~ 

t p ,  average reduction factor. 

(7a)-(7h) of the algorithm presented in the preceding section. The method chosen is PGS + PGS. If 
we make a balance between p and time we see that PGS + PGS is a good choice. Concerning the 
use of injection or FW as restriction operator, the tests done show that FW is preferable. 

The results of engineering interest usually reported in the literature for the subject of this paper 
are 

(a) the surface vorticity 
(b) the surface pressure 
(c) drag coefficients 
(d) vortex length. 

The surface pressure and the drag coefficients were calculated using the following 

surface pressure 

where 

form drag coeficient 

skin friction drag coeflcient 

CD, =$ Io* [, sin2B do, 
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total drag coeficient 

C D =  CDp+ CDF, (12) 
The surface vorticity obtained with the MG algorithm is depicted in Figure 1 for Re = 100 only. 

The surface vorticity obtained with the artificial viscosity scheme25 and the second-order-accurate 
solution are also depicted in this figure. The results at Re = 50,400 and 10o0 are similar, but it must 
be noted that the differences between the three solutions increase with an increase in Re. Using the 
number of cycles presented in the preceding section, the solution is obtained in the limit of the 
truncation error. Increasing the number of MG cycles (e.g. doubling them) changes the results 
(surface vorticity, drag coefficients) insignificantly. Figure 1 shows that the surface vorticity 
obtained with the first-order-accurate schemes is far from the second-order-accurate solution. The 

0.0 n 
9 

Figure 1. Surface vorticity at Re= 100: A, upwind; 0, artificial viscosity; 0, second-order-accurate solution 
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values of the surface pressure, drag coefficients and vortex length obtained with the first-order- 
accurate schemes are not presented, but the disagreement between these results and the second- 
order-accurate results is as large as in the case of the surface vorticity. In Reference 1 (p. 106) it can 
be seen that the results (separation angle and vortex length) of the second-order-accurate scheme 
were confirmed experimentally. Thus, from Figure 1, the necessity to improve the first-order- 
accurate solution is evident. As was mentioned in the preceding section, DC iteration was used to 
do this. 

Hemker28 presents two working alternatives valid for algorithm (7) if the DC iteration starts 
with a first-order initial approximation and second-order accuracy is desired. In the first it is 
sufficient to take ncdc=l and kd=O(log(h)). In the other alternative kd= 1 and a sufficiently 
large number of ncdc is required. The choice between these two alternatives is made a function of 
the computational cost of the FAS step and the right-hand-side evaluation (the quantity din (7k). 

For the DC iteration the following aspects will be analysed: 

(a) the effect of the number of MG cycles used in the DC step on the convergence rate of the DC 

(b) the comparison between the convergence rate of the DC iteration with MG and the DC 

(c) the evolution of the solution during the DC process 
(d) the evolution of the error between the solutions of two consecutive DC steps. 

For the problems mentioned above all the tests were made at Re=50  with a three-level 
algorithm (the finest level has only 33 x 33 points). The use of a four-level algorithm does not 
change anything in the results obtained. On increasing Re the situation is similar but more 
iterations are required to reach the second-order-accurate solution. 

The effect of the number of MG cycles used in the DC step on the convergence rate of the DC 
process is presented in Figures 2 and 3. In Figure 2 the behaviour of the total drag as a measure of 
the second-order accuracy is presented. In Figure 3 the error 

iteration 

iteration with the corresponding single-grid algorithm 

max I$:,: ' (CY.: ') - $7, j ((7, j )  I, (13) 
i , j  

where the superscript stands for the DC iteration, is presented. Experiments were also done using 
more than three MG cycles, but no improvement was observed. Also in these figures the results 
obtained with PGS + PGS in the single-grid version are presented. Four relaxation sweeps, which 
are equivalent to one MG cycle, are made in the DC step. Experiments were also done with eight 
and 12 relaxation sweeps in the DC iteration, but these results are not depicted in order to alleviate 
clutter in Figures 2 and 3. No information is lost as a result of this. From Figures 2 and 3 the 
following conclusions can be drawn. 

(a) An increase of the number of MG cycles in the DC step accelerates the convergence rate of 

(b) The most efficient version is that with one MG cycle. 
(c) The MG and single-grid results are close to each other. 
(d) The first alternative of HemkerZ8 does not work in this case. 
(e) The idea, widely used in the literature, that a small number of DC iterations are necessary is 

not valid. 
(f)  A clear correspondence between the error defined in (13) and the accuracy of the total drag 

cannot be made; this correspondence is function of the number of MG cycles used in the 
DC step. 

the DC process only in the initial stage. 
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4.0 

30 

0 
U 

2.0 

1.0 I I 
1 10 20 

Cumulative No. of  MG cycles 

Figure 2. Evolution of the total drag coefficient during the DC process as a function of the number of MG cycles: 0, one 
MG cycle; A ,  two MG cycles; 0, three MG cycles; 0 ,  SG 

The statements made previously concerning the effect on the convergence of the DC iteration of 
the number of MG cycles used in the DC step and the behaviour of the single-grid version can be 
prevised from the proposition of Auzinger and Stetter (Reference 30, pp. 33G-33 1). 

The average reduction factor of the DC process for all variants presented in Figures 2 and 3 can 
be viewed in Table 11. As can be seen, the combination DC-MG is a relatively slowly convergent 
iteration. To complete the description, the evolutions of the surface vorticity, surface pressure and 
vortex length during the DC process are presented in Figures 4-6 respectively. These results were 
obtained with the four-level algorithm. 

Another aspect of the DC process is the convergence criterion. A generally valid convergence 
criterion is not yet established in the literature. Auzinger and Stetter3O and Auzinger" for a 
weakly non-linear diffusion problem, Hemker3' for a standard linear convection-diffusion 
equation and HemkerZ8 and Spekreijse3* for Euler equations do not present a clear criterion for 
the convergence of the DC process. The iteration is said to be convergent when the DC solution 
attains the high-order-accurate solution without any numerical specification. 1n.Reference 17 the 
norm of the inner iteration residuals is depicted as the convergence measure. In the present study 
the DC iteration is said to be convergent when the first three significant figures of the maximum 
surface vorticity and its location, of the total drag coefficient and of the vortex length remain 
unchanged. Our criterion corresponds to a value of - 2  x for the error defined in (13). Note 
that this correspondence is conditioned by the number of MG cycles (one in this case) used in a DC 
step. 

The results obtained with this error criterion are in good agreement with those reported in the 
literature. The numerical values of the separation angle, vortex length and drag coefficients are 
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Figure 3. Evolution of the DC iteration error as a function of the number of MG cycles: 0, one MG cycle; A ,  two MG 
cycles; 0, three MG cycles; 0,  SG 

Table 11. Average reduction factor for the different variants of 
the DC process 

Variant Number of inner iterations ii 

DC-MG 
DC-MG 
DC-MG 
DC-SG 

0 7 6  
0.742 
0.741 
0.80 
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n e 0.0 

Figure 4. Evolution of the surface vorticity during the DC iteration at Re=50 

2.0 

0.0 

n* 

-5.0 

0 

lr e 0.0 

Figure 5. Evolution of the surface pressure during the DC iteration at Re= 50 
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0.5 

Figure 6. Evolution of the vortex length during the DC iteration at Re=50 

Table 111. Numerical values for drag coefficients, vortex length and separation angle 
~~ ~ 

Reference 29 Reference 1 Present work 

CDP CDF CD LID 8 s  CDP CDF CD LID 4 
50 0.661 0915 1.576 0.45 140 0639 0.917 1556 045 140 

100 0.512 0.576 1.088 0.93 127 0.493 0576 1.069 093 127 

Table IV. Number of DC iterations neces- 
sary to attain the error criterion 

~ 

Re Number of DC steps 

50 25 
100 38 
400 - 

lo00 Diverging 

depicted in Table I11 together with the values presented in References 1 and 29. As can be seen, the 
concordance in drag coefficients is better than 5%. The separation angle and the vortex length 
coincide with those of Reference 1. 

In Table IV the number of DC iterations with one MG cycle as inner iteration necessary to 
attain the convergence criterion is presented. As can be seen, the DC iteration converges only at 
Re = 50 and 100. At Re = 400 the DC iteration becomes oscillatory and at Re = 1000 it diverges. 
With the artificial viscosity scheme of Reference 25 the DC process converges at Re=400. In spite 
of the fact that the convergence criterion used in this work is not too severe, a relatively large 
number of DC iterations compared with References 28 and 30-32 are necessary. To improve the 
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performance of the DC-MG iteration, the following strategy, which can be viewed as a nested 
DC-MG algorithm, is proposed: 

start with an approximation for u1 

I:= 1; for i :=  l(1) 15 do FAS(I, u,, F,) 
3 

u,+ 1: = I,,, + 1 4 

for I: = 2( l)L do 

begin 

for j :  = l(1) ncdc ( 1 )  do 

begin 

d,: = Ni, 1 ~ 1 -  N , ,  2 U I  + F ,  

for i: = 1( 1) kd ( j )  do FAS(Z, u,, d,)  

end 

4.0 

3.0 

n 
U 

2 .o 

1.0 

0 classic DC-MG 

0 nested DC-MG 

R e =  5 0  

- - 

I 1 
10 ncdc 20 

Figure 7. Comparison in terms of the total drag coefficient between the classical and nested DC-MG iterations 
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0 c\asstc DC-MG 

0 nested DC-MG 

Re: 50 

1 10 20 
ncdc 

Figure 8. Comparison in terms of the DC iteration error between the classical and nested variants of the DC-MG process 

if l < L  then U ~ + ~ : = Z : ~ + ~ U ~  else (14k) 
end ( 141) 

where kd( 1) = 2 and kd(j) = 1 for j > 1. 
A comparison between the classical and nested variants of the DC-MG process is made in 

Figures 7 and 8. For the nested variant, since the work on the previous levels is taken into account, 
the corresponding curves are displaced to the right. As can be seen, the improvement is 
considerable. On the finest level (level 4) only five iterations at Re=50 and 10 iterations at 
Re=100 are needed to reach the error criterion. The problem for the nested variant is the 
number of DC steps on levels 2 and 3. The following variants were found to be quasi-optimal 
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(a) at  Re=50, 15 DC iterations on level 2, five DC iterations on level 3 
(b) at Re= 100, 20 DC iterations on level 2, eight DC iterations on level 3. 

As can be seen, in the nested variant too the number of DC iterations on the finest level depends on 
Re and increases with an increase in Re. 

In References 1 and 3-7, sufficient information is not presented on the computational efficiency 
in order to make a fair comparison with the method used in this work. In addition, the following 
statements can be made. 

(a) The number of relaxation steps in the quasi-local relaxation methods is considerably larger 
than for the DC-MG algorithm; in spite of the fact that a DC-MG step consumes a t  least 
three times more computer time, DC-MG (in the classical variant) is globally faster than the 
quasi-local relaxation methods. 

(b) The quasi-local relaxation procedures are very sensitive to the value of the relaxation factor 
for the boundary condition (Id) (for vorticity); this causes trouble in using the relaxation 
methods in the nested variant. 

(c) If a time step in the transient formulation is considered quasi-equivalent to a DC step, the 
number of DC steps is less than the number of time steps used in Reference 7. 

CONCLUSIONS 

An efficient calculation procedure for the steady state Navier-Stokes equations in the I,-[ 
formulation has been developed using the defect correction technique with MG as inner iteration. 
For the flow past a sphere the solution obtained with the first-order-accurate discretization 
schemes is far from the physical solution. At least second-order accuracy in the solution is desired. 
The method used in this study to obtain the second-order-accurate solution is DC iteration. As 
inner iteration in the DC step the MG method was used. The most efficient version of the DC-MG 
algorithm seems to be that with one MG cycle (V-cycle) in a DC step. Also the DC method with 
the smoothing step of the MG algorithm used in the single-grid version as inner iteration performs 
very close to the DC-MG version. Compared with the other cases solved with the DC-MG 
algorithm, the flow past a sphere necessitates a relatively large number of DC steps (up to 40). 
Using the nested variant of the DC-MG algorithm the computational effort is reduced by 60%. 

Starting with the zero approximation the DC-MG algorithm converges to the desired solution 
for Re up to 400. The quasi-local elaxation methods converge in the same domain of Re. The 
transient formulation provides steady solutions for Re up to 1OOO. 

Compared with the previous methods used to solve the steady flow past a sphere, we can 
conclude that the DC-MG method is faster. 

APPENDIX: NOMENCLATURE 

a 
F 
ho 
h z  
P 
P 
r 
R 

sphere radius 
s treamfunction 
lattice spacing in the &direction 
lattice spacing in the z-direction 
pressure 
dimensionless pressure, (p - p,)/O.SOp U z  
dimensionless radial distance, R/a 
radial distance 
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Re Reynolds number, 2 U / v  
U free stream velocity 
VR radial velocity component 
vl? tangential velocity component 
Y vorticity 
Z dimensionless radial distance 

Subscripts 

i 
i 
S 

defining mesh point in the 8-direction 
defining mesh point in the z-direction 
evaluated at z = 0 

Superscripts 

n DC iteration number 

Greek 

dimensionless vorticity, Yu/U 
polar angle, spherical co-ordinate system 
kinematic viscosity 
density 
dimensionless streamfunction, F / p  Uu2 
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